Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle.
نویسندگان
چکیده
This study investigated the dynamic regulation of IIx-IIb MHC genes in the fast white medial gastrocnemius (WMG) muscle in response to intermittent resistance exercise training (RE), a model associated with a rapid shift from IIb to IIx expression (11). We investigated the effect of 4 days of RE on the transcriptional activity across the skeletal MHC gene locus in the WMG in female Sprague-Dawley rats. Our results show that RE resulted in significant shifts from IIb to IIx observed at both the pre-mRNA and mRNA levels. An antisense RNA (xII NAT) was detected in the intergenic (IG) region between IIx and IIb, extending across the entire IIx gene and into its promoter. The expression of the xII NAT was positively correlated with IIb pre-mRNA (R = +0.8), and negatively correlated with IIx pre-mRNA (R = -0.8). Transcription mapping of the IIx-IIb IG region revealed the generation of sense IIb and xII NATs from a single promoter region. This bidirectional promoter is highly conserved among species and contains several regulatory elements that may be implicated in its regulation. These results suggest that the IIx and the IIb genes are physically and functionally linked via the bidirectional promoter. In order for the IIx MHC gene to be regulated, a feedback mechanism from the IG xII NAT is needed. In conclusion, the IG bidirectional promoter generating antisense RNA appears to be essential for the coordinated regulation of the skeletal muscle MHC genes during dynamic phenotype shifts.
منابع مشابه
Editorial Focus: Making sense (and antisense) of myosin heavy chain gene expression. Comments on “Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle” by Rinaldi et al
FOR OVER 40 YEARS, OUR primary understanding of how eukaryotic gene transcription is regulated has centered on the promoter concept. In this model, transcriptional activators bind to consensus sequences in the proximal upstream regulatory region of a gene, altering chromatin structure to allow recruitment of the RNA polymerase complex to a promoter sequence, which then creates a complementary t...
متن کاملDifferential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading.
Recent advances in chromatin biology have enhanced our understanding of gene regulation. It is now widely appreciated that gene regulation is dependent upon post-translational modifications to the histones which package genes in the nucleus of cells. Active genes are known to be associated with acetylation of histones (H3ac) and trimethylation of lysine 4 in histone H3 (H3K4me3). Using chromati...
متن کاملMyosin isoforms in mammalian skeletal muscle.
Skeletal muscles of different mammalian species contain four major myosin heavy-chain (MHC) isoforms: the "slow" or beta-MHC and the three "fast" IIa-, IIx-, and IIb-MHCs; and three major myosin light-chain (MLC) isoforms, the "slow" MLC1s and the two "fast" MLC1f and MLC3f. The differential distribution of the MHCs defines four major fiber types containing a single MHC isoform and a number of ...
متن کاملEvidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama).
Skeletal muscle fiber types classified on the basis of their content of different myosin heavy chain (MHC) isoforms were analyzed in samples from hindlimb muscles of adult sedentary llamas (Lama glama) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry, and quantitative histochemistry of fiber metabolic and size propert...
متن کاملRegulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.
Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2008